
IL PENSIERO COMPUTAZIONALE
Percorso Formativo per i Docenti della Scuola Secondaria di Secondo Grado -
Universitá di Pisa

Part 1. Text Indexing

Nicola Prezza

1

Outline

Today: pattern matching algorithms and data structures.

1. Text indexing: suffix arrays

2. Compressed text indexing: the Burrows-Wheeler transform

3. Application:

• DNA aligners (BWA: the Burrows-Wheeler Aligner)
• SNP calling (samtools/bcftools)

2

From the previous lecture:

Problem We have a draft GH of the Human genome. How do we obtain the
genome sequence Gx of a specific individual x? (x=your name)

Solution 1: de novo assembly We can try sequencing+assembling from scratch
(de novo assembly). Too expensive (we need a lot of sequencing) and
time-consuming (assembling is slow).

3

From the previous lecture:

Problem We have a draft GH of the Human genome. How do we obtain the
genome sequence Gx of a specific individual x? (x=your name)

Solution 1: de novo assembly We can try sequencing+assembling from scratch
(de novo assembly). Too expensive (we need a lot of sequencing) and
time-consuming (assembling is slow).

3

From the previous lecture:

Problem We have a draft GH of the Human genome. How do we obtain the
genome sequence Gx of a specific individual x? (x=your name)

Solution 1: de novo assembly We can try sequencing+assembling from scratch
(de novo assembly). Too expensive (we need a lot of sequencing) and
time-consuming (assembling is slow).

3

Solution 2: alignment and calling
Can we exploit GH? idea:

1. Sequence Gx and obtain a set of reads r1, r2, . . . (read = DNA string of
length ≈ 100)

2. Alignment (pattern matching): search each ri inside GH . Maybe ri occurs
with some errors: find the best match.

3. Calling: using GH and the differences between r1, r2, . . . and GH ,
reconstruct Gx .

Solution 2 (alignment) is much more convenient w.r.t. solution 1 (assembly)
because:

• We need to sequence less. In technical terms, we need less coverage

• Alignment is much faster than assembly

4

Solution 2: alignment and calling
Can we exploit GH? idea:

1. Sequence Gx and obtain a set of reads r1, r2, . . . (read = DNA string of
length ≈ 100)

2. Alignment (pattern matching): search each ri inside GH . Maybe ri occurs
with some errors: find the best match.

3. Calling: using GH and the differences between r1, r2, . . . and GH ,
reconstruct Gx .

Solution 2 (alignment) is much more convenient w.r.t. solution 1 (assembly)
because:

• We need to sequence less. In technical terms, we need less coverage

• Alignment is much faster than assembly

4

Alignment and calling

5

The pattern matching problem

Technical problems that we will ignore

1. ri can occur inside GH with (a lot of) differences: mismatches, indels,
gaps, inversions ...

2. The best match of ri can occur in multiple places: which one do we
choose?

In order to study the problem from a clean computational standpoint, we
consider the simpler case of exact pattern matching:

Problem definition: exact pattern matching

• Input: a set of strings (or reads) r1, r2, . . . , rt , all of length m, and a text
(genome) G of length n� m.

• Output: for each string ri , the set of positions i1, . . . , iocc where ri

appears inside G

6

Technical problems that we will ignore

1. ri can occur inside GH with (a lot of) differences: mismatches, indels,
gaps, inversions ...

2. The best match of ri can occur in multiple places: which one do we
choose?

In order to study the problem from a clean computational standpoint, we
consider the simpler case of exact pattern matching:

Problem definition: exact pattern matching

• Input: a set of strings (or reads) r1, r2, . . . , rt , all of length m, and a text
(genome) G of length n� m.

• Output: for each string ri , the set of positions i1, . . . , iocc where ri

appears inside G

6

Example

G = AGCATCAGCCTCGGCAGGATGCATTTCACATTTGTGATCTCATTTAACCTCCACAAAGACC
r1 = CCT
r2 = TTT

read r1

G = AGCATCAGCCTCGGCAGGATGCATTTCACATTTGTGATCTCATTTAACCTCCACAAAGACC
output: 9, 48

read r2

G = AGCATCAGCCTCGGCAGGATGCATTTCACATTTGTGATCTCATTTAACCTCCACAAAGACC
output: 24, 31, 43

7

Example

G = AGCATCAGCCTCGGCAGGATGCATTTCACATTTGTGATCTCATTTAACCTCCACAAAGACC
r1 = CCT
r2 = TTT

read r1

G = AGCATCAGCCTCGGCAGGATGCATTTCACATTTGTGATCTCATTTAACCTCCACAAAGACC
output: 9, 48

read r2

G = AGCATCAGCCTCGGCAGGATGCATTTCACATTTGTGATCTCATTTAACCTCCACAAAGACC
output: 24, 31, 43

7

Example

G = AGCATCAGCCTCGGCAGGATGCATTTCACATTTGTGATCTCATTTAACCTCCACAAAGACC
r1 = CCT
r2 = TTT

read r1

G = AGCATCAGCCTCGGCAGGATGCATTTCACATTTGTGATCTCATTTAACCTCCACAAAGACC
output: 9, 48

read r2

G = AGCATCAGCCTCGGCAGGATGCATTTCACATTTGTGATCTCATTTAACCTCCACAAAGACC
output: 24, 31, 43

7

How do we solve the pattern matching problem?

First solution

A first idea: for each read ri , we scan the whole text G to search matches

Time cost

We have t reads of length m and G ’s length is n. In total, we need to perform
t ·m · n steps. This can be lowered to t · n steps with specialized algorithms.

In practice ...

t is usually in the order of 108. For the Human genome, n ≈ 3 · 109. Assuming
that each step takes ≈ 1 ns = 10−9 s on a computer, then
t · n ≈ 3 · 109 s ≈ 9.5 years.

Clearly, scanning G for each read is not a good idea ...

8

How do we solve the pattern matching problem?

First solution

A first idea: for each read ri , we scan the whole text G to search matches

Time cost

We have t reads of length m and G ’s length is n. In total, we need to perform
t ·m · n steps. This can be lowered to t · n steps with specialized algorithms.

In practice ...

t is usually in the order of 108. For the Human genome, n ≈ 3 · 109. Assuming
that each step takes ≈ 1 ns = 10−9 s on a computer, then
t · n ≈ 3 · 109 s ≈ 9.5 years.

Clearly, scanning G for each read is not a good idea ...

8

How do we solve the pattern matching problem?

First solution

A first idea: for each read ri , we scan the whole text G to search matches

Time cost

We have t reads of length m and G ’s length is n. In total, we need to perform
t ·m · n steps. This can be lowered to t · n steps with specialized algorithms.

In practice ...

t is usually in the order of 108. For the Human genome, n ≈ 3 · 109. Assuming
that each step takes ≈ 1 ns = 10−9 s on a computer, then
t · n ≈ 3 · 109 s ≈ 9.5 years.

Clearly, scanning G for each read is not a good idea ...

8

Inverted and q-gram indexes

Example

G = "When on board H.M.S. Beagle, as naturalist, I was much struck with certain facts in the
distribution of the organic beings inhabiting South America, and in the geological relations
of the present to the past inhabitants of that continent. These facts, as will be seen in the
latter chapters of this volume, seemed to throw some light on the origin of species--that mystery
of mysteries, as it has been called by one of our greatest philosophers. On my return home, it
occurred to me, in 1837, that something might perhaps be made out on this question by patiently
accumulating and reflecting on all sorts of facts which could possibly have any bearing on it.
After five years’ work I allowed myself to speculate on the subject, and drew up some short notes;
these I enlarged in 1844 into a sketch of the conclusions, which then seemed to me probable: from
that period to the present day I have steadily pursued the same object. I hope that I may be excused
for entering on these personal details, as I give them to show that I have not been hasty in coming
to a decision. "

from "The Origin of Species", Charles Darwin

Additional information (words in alphabetic order)

"as": line 1, word 6; line 3, word 13; line 5, word 3;
...
"years": line 8, word 3.
...
"After": line 8, word 1
...
"Beagle": line 1, word 5
...

9

Indexing

The additional information we store to speed-up subsequent searches is
called index

Definition An index I(G) of some text G is a collection of
information—we call it a data structure—that speeds up searches of
words inside G

Inverted indexes The index of our example takes the name inverted
index (can you tell why "inverted"?)

10

Indexing

The additional information we store to speed-up subsequent searches is
called index

Definition An index I(G) of some text G is a collection of
information—we call it a data structure—that speeds up searches of
words inside G

Inverted indexes The index of our example takes the name inverted
index (can you tell why "inverted"?)

10

Indexing

The additional information we store to speed-up subsequent searches is
called index

Definition An index I(G) of some text G is a collection of
information—we call it a data structure—that speeds up searches of
words inside G

Inverted indexes The index of our example takes the name inverted
index (can you tell why "inverted"?)

10

Indexing

First complication DNA is not organized in words (i.e. no spaces). How
can we build an inverted index?

Possible solution Put in the inverted index all sub-strings of length q,
for some q > 0. This index takes the name of q-gram index.

This solution is valid and used in practice. However, how do we find
reads longer than q? solution used in practice: seed and extend

11

Indexing

First complication DNA is not organized in words (i.e. no spaces). How
can we build an inverted index?

Possible solution Put in the inverted index all sub-strings of length q,
for some q > 0. This index takes the name of q-gram index.

This solution is valid and used in practice. However, how do we find
reads longer than q? solution used in practice: seed and extend

11

Indexing

First complication DNA is not organized in words (i.e. no spaces). How
can we build an inverted index?

Possible solution Put in the inverted index all sub-strings of length q,
for some q > 0. This index takes the name of q-gram index.

This solution is valid and used in practice. However, how do we find
reads longer than q? solution used in practice: seed and extend

11

Example: seed and extend

Example

G = AGCATCAGCCTCGGCAGGATGCATTTCACATTTGTGATCTCATTTAACCTCCACAAAGACC

Our q-gram index, with q=3

AAA: 55
AAC: 46
ACA: 28, 53
...
TTT: 24, 31, 43

Find r1 = ACATTTGT

G = AGCATCAGCCTCGGCAGGATGCATTTCACATTTGTGATCTCATTTAACCTCCACAAAGACC

1. Seed: using the inverted index, we find occurrences of ACA: 28, 53

2. Extend: check if also the remaining characters TTTGT match. We discard
occurrence 53. Output = 28.

12

Example: seed and extend

Example

G = AGCATCAGCCTCGGCAGGATGCATTTCACATTTGTGATCTCATTTAACCTCCACAAAGACC

Our q-gram index, with q=3

AAA: 55
AAC: 46
ACA: 28, 53
...
TTT: 24, 31, 43

Find r1 = ACATTTGT

G = AGCATCAGCCTCGGCAGGATGCATTTCACATTTGTGATCTCATTTAACCTCCACAAAGACC

1. Seed: using the inverted index, we find occurrences of ACA: 28, 53

2. Extend: check if also the remaining characters TTTGT match. We discard
occurrence 53. Output = 28.

12

q-gram indexes are a simple solution that is used also in practice.
However, they do not offer guarantees in the worst case:

What happens if ACATTTGT appears just 1 time inside the genome, but
ACA appears 1.000.000 times?

In this case, our seed-and-extend strategy needs to check all 1.000.000
occurrences of ACA before finding the occurrence of ACATTTGT

13

Full-text index

We therefore re-formulate our definition with stronger requirements:

Definition: full text index A full-text index I(G) of some text G is a data
structure that:

• permits to find all occ occurrences of a string of length m inside G in
time proportional to m + occ.

• takes small space: proportional to n = |G |

Note: in practice, m and occ are very small when compared to n. On average, reads coming from a
sequencing experiment satisfy m ≈ 100 and occ � 100.

m + occ ≤ 200 steps are therefore much better than n ≈ 3 · 109 steps (approximately 10.000.000 times
faster) required if we do not build any index!

14

Full-text index

We therefore re-formulate our definition with stronger requirements:

Definition: full text index A full-text index I(G) of some text G is a data
structure that:

• permits to find all occ occurrences of a string of length m inside G in
time proportional to m + occ.

• takes small space: proportional to n = |G |

Note: in practice, m and occ are very small when compared to n. On average, reads coming from a
sequencing experiment satisfy m ≈ 100 and occ � 100.

m + occ ≤ 200 steps are therefore much better than n ≈ 3 · 109 steps (approximately 10.000.000 times
faster) required if we do not build any index!

14

Suffix arrays

Idea: suffix sorting

Definition

A suffix of a string w is a string that begins in the middle of w and ends at the
end of w . Similar for prefix (i.e. string that begins at the beginning of w and
ends in the middle of w).

Example

All suffixes of ATTTGTG are:

• ATTTGTG

• TTTGTG

• TTGTG

• TGTG

• GTG

• TG

• G

15

Idea: suffix sorting

Idea: build a (sorted) dictionary with just the suffixes of our genome and their
starting positions.

Example

All alphabetically-sorted suffixes of ATTTGTG and their starting positions are:

1. ATTTGTG: 1

2. G: 7

3. GTG: 5

4. TG: 6

5. TGTG: 4

6. TTGTG: 3

7. TTTGTG: 2

16

Idea: suffix sorting

Now, note that any string that appears in the text is a prefix of a range of
suffixes in our list.

Example

Suppose we are searching TT. Then two suffixes are prefixed by TT:

1. ATTTGTG: 1

2. G: 7

3. GTG: 5

4. TG: 6

5. TGTG: 4

6. TTGTG: 3

7. TTTGTG: 2

⇒ TT occurs at positions 3 and 2 inside ATTTGTG

17

Idea: suffix sorting

Pros

• This index works for every string length (i.e. q is not fixed)

• All occurrences of the string are in a contiguous range in our list

• Easy to find the range quickly: binary search (the same you use to search
a word in a dictionary)

• Only n strings in our index!

Cons

• Too much space: we cannot afford storing explicitly all suffixes!

18

Idea: suffix sorting

Pros

• This index works for every string length (i.e. q is not fixed)

• All occurrences of the string are in a contiguous range in our list

• Easy to find the range quickly: binary search (the same you use to search
a word in a dictionary)

• Only n strings in our index!

Cons

• Too much space: we cannot afford storing explicitly all suffixes!

18

suffix sorting

We are however close to a solution. We only need to take one little step
further: store just the starting positions of the suffixes!

• ATTTGTG: 1

• G: 7

• GTG: 5

• TG: 6

• TGTG: 4

• TTGTG: 3

• TTTGTG: 2

⇒

• 1

• 7

• 5

• 6

• 4

• 3

• 2

19

suffix sorting

Text:

1234567
ATTTGTG

Index:

1,7,5,6,4,3,2

To search a pattern: binary search in the list of positions, and jump in the text
to look up characters.

20

suffix arrays

This list of text positions takes the name of suffix array.

Manber, Udi, and Gene Myers. "Suffix arrays: a new method for on-line string
searches." siam Journal on Computing 22.5 (1993): 935-948.

21

suffix arrays: space

How much space?

We store n numbers in the range 1, ..., n. For genomes of length n < 4 · 109 =
4 Billions of nucleotides, each such number requires log2(4 · 109) ≈ 32 bits = 4
Bytes.

Space The suffix array + the original genome take only 5 · n Bytes!

On the Human genome, this is approximately 15 GB.

22

suffix arrays: time

Exercise

Build the suffix array of the genome CATCATGCAT

23

Is this the end of indexing?

It seems that suffix arrays definitely solve our problem!

This is true until we need to index just one genome ...

24

Population genomics

Sequencing is becoming cheaper and faster

This means that it is relatively cheap to get the genomic sequence of a single
person

The interest now is moving towards population genomics: get the genomes of
as many individuals as possible, and use them to build a database of known

genetic mutations (and their evolution in space/time)

Example: the 1000 genomes project http://www.internationalgenome.org/

25

http://www.internationalgenome.org/

Population genomics

Sequencing is becoming cheaper and faster

This means that it is relatively cheap to get the genomic sequence of a single
person

The interest now is moving towards population genomics: get the genomes of
as many individuals as possible, and use them to build a database of known

genetic mutations (and their evolution in space/time)

Example: the 1000 genomes project http://www.internationalgenome.org/

25

http://www.internationalgenome.org/

Population genomics

Sequencing is becoming cheaper and faster

This means that it is relatively cheap to get the genomic sequence of a single
person

The interest now is moving towards population genomics: get the genomes of
as many individuals as possible, and use them to build a database of known

genetic mutations (and their evolution in space/time)

Example: the 1000 genomes project http://www.internationalgenome.org/

25

http://www.internationalgenome.org/

Population genomics

Sequencing is becoming cheaper and faster

This means that it is relatively cheap to get the genomic sequence of a single
person

The interest now is moving towards population genomics: get the genomes of
as many individuals as possible, and use them to build a database of known

genetic mutations (and their evolution in space/time)

Example: the 1000 genomes project http://www.internationalgenome.org/

25

http://www.internationalgenome.org/

Population genomics

Possibly, we would like to index all these genomes. Why?

By aligning your DNA sequences on such an index, it would be possible to
quickly spot mutations in your DNA that could be linked, e.g. to particular

known diseases.

26

Population genomics

We have a new problem: the suffix array of 1000 Human genomes takes
5 · (3 · 109) · 1000 = 1.5 · 1013 ≈ 15 TeraBytes!

... and this is just for 1000 people. The world population was estimated to
have reached 7.500.000.000 on April 24, 2017. The United Nations estimates it
will further increase to 11.2 billion in the year 2100

27

Population genomics

We have a new problem: the suffix array of 1000 Human genomes takes
5 · (3 · 109) · 1000 = 1.5 · 1013 ≈ 15 TeraBytes!

... and this is just for 1000 people. The world population was estimated to
have reached 7.500.000.000 on April 24, 2017. The United Nations estimates it
will further increase to 11.2 billion in the year 2100

27

Population genomics

Key observation: any two human genomes are > 99.9% similar. On average,
the number of differences between two random people is just 3 million of DNA
bases, and even less within groups of genetically-related people (e.g.
populations, families ...)

This suggests that, after storing just one Human genome (3 GB), each new
genome only adds 3MB of information.

⇒ 1000 Human genomes could be stored in just 6 GB ...

28

Population genomics

Key observation: any two human genomes are > 99.9% similar. On average,
the number of differences between two random people is just 3 million of DNA
bases, and even less within groups of genetically-related people (e.g.
populations, families ...)

This suggests that, after storing just one Human genome (3 GB), each new
genome only adds 3MB of information.

⇒ 1000 Human genomes could be stored in just 6 GB ...

28

Next lecture: compressed text indexes

29

	The pattern matching problem
	Inverted and q-gram indexes
	Suffix arrays
	Is this the end of indexing?

