
IL PENSIERO COMPUTAZIONALE
Percorso Formativo per i Docenti della Scuola Secondaria di Secondo Grado -
Universitá di Pisa

Part 2. Compressed Text Indexing

Nicola Prezza

1

As seen in the previous lecture, any two Human genomes are 99.9% similar.

This suggests that storing a collection of genomes in plain format is not a
smart solution

We need to resort to data compression

2

Compression
A compressor is an algorithm C that takes as input a file F and, exploiting
repetitions and regularities in F , produces a file C(F) that is often much
smaller than F .

Decompression
Importantly, the process must be reversible: there must exist an algorithm D (a
decompressor) such that D(C(F)) = F

Examples

• WinZip

• 7-Zip

• Bzip2

• ...

3

• As seen, 1000 Human genomes G1,G2, ...,G1000 require 3 TB to be
stored: |G1,G2, ...,G1000| ≈ 3 TB

• Recall, however, that each genome carries only 3 MB of new
information...

• goal: to find a good compressor C such that
|C(G1,G2, ...,G1000)| ≈ 6 GB

4

• As seen, 1000 Human genomes G1,G2, ...,G1000 require 3 TB to be
stored: |G1,G2, ...,G1000| ≈ 3 TB

• Recall, however, that each genome carries only 3 MB of new
information...

• goal: to find a good compressor C such that
|C(G1,G2, ...,G1000)| ≈ 6 GB

4

• As seen, 1000 Human genomes G1,G2, ...,G1000 require 3 TB to be
stored: |G1,G2, ...,G1000| ≈ 3 TB

• Recall, however, that each genome carries only 3 MB of new
information...

• goal: to find a good compressor C such that
|C(G1,G2, ...,G1000)| ≈ 6 GB

4

Compression of repetitive text collections

The research field studying the compression of repetitive text collections is very
active. The main compression techniques used are:

• Lempel-Ziv parsing (LZ77)

• Grammar compression

• Burrows-Wheeler transform (BWT)

We will focus on BWT: the technique that has had the largest impact in
bioinformatics

5

The Burrows-Wheeler transform

• Michael Burrows and David J Wheeler, 1994

• BWT is at the basis of today’s most successful DNA compressed indexes:
Bowtie, BWA, SOAP2, ...

Idea: we "mix" the letters in our genome G and obtain a string BWT(G) of the
same length with the following interesting properties:

• We can reconstruct G from BWT(G)

• BWT(G) is "more compressible" than G

• BWT(G) is a compressed index

... How do we do this?

6

• Michael Burrows and David J Wheeler, 1994

• BWT is at the basis of today’s most successful DNA compressed indexes:
Bowtie, BWA, SOAP2, ...

Idea: we "mix" the letters in our genome G and obtain a string BWT(G) of the
same length with the following interesting properties:

• We can reconstruct G from BWT(G)

• BWT(G) is "more compressible" than G

• BWT(G) is a compressed index

... How do we do this?

6

Definition: right-rotation of a word

we obtain a right-rotation of a word W if we take the last character of
W and move it at the begin of W

Example

The right-rotation of bioinformatics is sbioinformatic

By repeating this process, we obtain all rotations of the word

7

Imagine taking all rotations of our text and sorting them in alphabetic
order ...

$CTCTCTCTCTCTCTCTCCTG
CCTG$CTCTCTCTCTCTCTCT
CTCCTG$CTCTCTCTCTCTCT
CTCTCCTG$CTCTCTCTCTCT
CTCTCTCCTG$CTCTCTCTCT
CTCTCTCTCCTG$CTCTCTCT
CTCTCTCTCTCCTG$CTCTCT
CTCTCTCTCTCTCCTG$CTCT
CTCTCTCTCTCTCTCCTG$CT
CTCTCTCTCTCTCTCTCCTG$
CTG$CTCTCTCTCTCTCTCTC
G$CTCTCTCTCTCTCTCTCCT
TCCTG$CTCTCTCTCTCTCTC
TCTCCTG$CTCTCTCTCTCTC
TCTCTCCTG$CTCTCTCTCTC
TCTCTCTCCTG$CTCTCTCTC
TCTCTCTCTCCTG$CTCTCTC
TCTCTCTCTCTCCTG$CTCTC
TCTCTCTCTCTCTCCTG$CTC
TCTCTCTCTCTCTCTCCTG$C
TG$CTCTCTCTCTCTCTCTCC

Note: character ’$’ guarantees that all rotations are distinct and, therefore, their ordering is well defined.

8

The Burrows-Wheeler transform

Take the last column (L): this is a text permutation.

$CTCTCTCTCTCTCTCTCCTG
CCTG$CTCTCTCTCTCTCTCT
CTCCTG$CTCTCTCTCTCTCT
CTCTCCTG$CTCTCTCTCTCT
CTCTCTCCTG$CTCTCTCTCT
CTCTCTCTCCTG$CTCTCTCT
CTCTCTCTCTCCTG$CTCTCT
CTCTCTCTCTCTCCTG$CTCT
CTCTCTCTCTCTCTCCTG$CT
CTCTCTCTCTCTCTCTCCTG$
CTG$CTCTCTCTCTCTCTCTC
G$CTCTCTCTCTCTCTCTCCT
TCCTG$CTCTCTCTCTCTCTC
TCTCCTG$CTCTCTCTCTCTC
TCTCTCCTG$CTCTCTCTCTC
TCTCTCTCCTG$CTCTCTCTC
TCTCTCTCTCCTG$CTCTCTC
TCTCTCTCTCTCCTG$CTCTC
TCTCTCTCTCTCTCCTG$CTC
TCTCTCTCTCTCTCTCCTG$C
TG$CTCTCTCTCTCTCTCTCC

This was exactly what Burrows and Wheeler proposed to do in 1994.
Last column = Burrows-Wheeler transform BWT(G) of G 9

BWT(G) = GTTTTTTTT$CTCCCCCCCCC

$CTCTCTCTCTCTCTCTCCTG
CCTG$CTCTCTCTCTCTCTCT
CTCCTG$CTCTCTCTCTCTCT
CTCTCCTG$CTCTCTCTCTCT
CTCTCTCCTG$CTCTCTCTCT
CTCTCTCTCCTG$CTCTCTCT
CTCTCTCTCTCCTG$CTCTCT
CTCTCTCTCTCTCCTG$CTCT
CTCTCTCTCTCTCTCCTG$CT
CTCTCTCTCTCTCTCTCCTG$
CTG$CTCTCTCTCTCTCTCTC
G$CTCTCTCTCTCTCTCTCCT
TCCTG$CTCTCTCTCTCTCTC
TCTCCTG$CTCTCTCTCTCTC
TCTCTCCTG$CTCTCTCTCTC
TCTCTCTCCTG$CTCTCTCTC
TCTCTCTCTCCTG$CTCTCTC
TCTCTCTCTCTCCTG$CTCTC
TCTCTCTCTCTCTCCTG$CTC
TCTCTCTCTCTCTCTCCTG$C
TG$CTCTCTCTCTCTCTCTCC

10

BWT(G) = GTTTTTTTT$CTCCCCCCCCC

Notice anything? BWT(G) is not as good as the first column
($CCCCCCCCCCGTTTTTTTTT), but very close!

• Property 1: the BWT tends to produce clusters of letters if the text
is repetitive

• Property 2: BWT is reversible. from BWT(G), we can reconstruct
G (we will prove this later)

• Property 3: the BWT is logically equivalent to the suffix array. It is
a text index!

11

BWT(G) = GTTTTTTTT$CTCCCCCCCCC

Notice anything? BWT(G) is not as good as the first column
($CCCCCCCCCCGTTTTTTTTT), but very close!

• Property 1: the BWT tends to produce clusters of letters if the text
is repetitive

• Property 2: BWT is reversible. from BWT(G), we can reconstruct
G (we will prove this later)

• Property 3: the BWT is logically equivalent to the suffix array. It is
a text index!

11

BWT(G) = GTTTTTTTT$CTCCCCCCCCC

Notice anything? BWT(G) is not as good as the first column
($CCCCCCCCCCGTTTTTTTTT), but very close!

• Property 1: the BWT tends to produce clusters of letters if the text
is repetitive

• Property 2: BWT is reversible. from BWT(G), we can reconstruct
G (we will prove this later)

• Property 3: the BWT is logically equivalent to the suffix array. It is
a text index!

11

BWT(G) = GTTTTTTTT$CTCCCCCCCCC

Notice anything? BWT(G) is not as good as the first column
($CCCCCCCCCCGTTTTTTTTT), but very close!

• Property 1: the BWT tends to produce clusters of letters if the text
is repetitive

• Property 2: BWT is reversible. from BWT(G), we can reconstruct
G (we will prove this later)

• Property 3: the BWT is logically equivalent to the suffix array. It is
a text index!

11

Run-length compression

BWT(G) = GTTTTTTTT$CTCCCCCCCCC

• The clusters are called equal-letter runs (or just runs). In the
example above, the number r of runs is r = 6

• To compress: encode each run with its length and character:
〈G , 1〉, 〈T , 8〉, 〈$, 1〉, 〈C , 1〉, 〈T , 1〉, 〈C , 9〉

• Compressed size = 12 Bytes. Original size = 21 Bytes

• r is very small if the text is repetitive!

12

Run-length compression

BWT(G) = GTTTTTTTT$CTCCCCCCCCC

• The clusters are called equal-letter runs (or just runs). In the
example above, the number r of runs is r = 6

• To compress: encode each run with its length and character:
〈G , 1〉, 〈T , 8〉, 〈$, 1〉, 〈C , 1〉, 〈T , 1〉, 〈C , 9〉

• Compressed size = 12 Bytes. Original size = 21 Bytes

• r is very small if the text is repetitive!

12

Run-length compression

BWT(G) = GTTTTTTTT$CTCCCCCCCCC

• The clusters are called equal-letter runs (or just runs). In the
example above, the number r of runs is r = 6

• To compress: encode each run with its length and character:
〈G , 1〉, 〈T , 8〉, 〈$, 1〉, 〈C , 1〉, 〈T , 1〉, 〈C , 9〉

• Compressed size = 12 Bytes. Original size = 21 Bytes

• r is very small if the text is repetitive!

12

Run-length compression

BWT(G) = GTTTTTTTT$CTCCCCCCCCC

• The clusters are called equal-letter runs (or just runs). In the
example above, the number r of runs is r = 6

• To compress: encode each run with its length and character:
〈G , 1〉, 〈T , 8〉, 〈$, 1〉, 〈C , 1〉, 〈T , 1〉, 〈C , 9〉

• Compressed size = 12 Bytes. Original size = 21 Bytes

• r is very small if the text is repetitive!

12

Run-length compression

BWT(G) = GTTTTTTTT$CTCCCCCCCCC

• The clusters are called equal-letter runs (or just runs). In the
example above, the number r of runs is r = 6

• To compress: encode each run with its length and character:
〈G , 1〉, 〈T , 8〉, 〈$, 1〉, 〈C , 1〉, 〈T , 1〉, 〈C , 9〉

• Compressed size = 12 Bytes. Original size = 21 Bytes

• r is very small if the text is repetitive!

12

Inverting the BWT

How to invert the BWT?

LF mapping

Property: the i-th character equal to x in column L and the i-th character
equal to x in column F are the same position in the text

Example

In the example below, the second ’C’ in column L (position 6) corresponds, in
the text, to the second ’C’ in column F (position 4) : both are followed by
"TAT$".

F L
1 $CCTAT
2 AT$CCT
3 CCTAT$
4 CTAT$C
5 T$CCTA
6 TAT$CC

13

Inverting the BWT

Note: after jumping from position 6 in column L to position 4 in column F, go
to position 4 in column L. We just walked back of one position in the text.

F L
1 $CCTAT
2 AT$CCT
3 CCTAT$
4 CTAT$C
5 T$CCTA
6 TAT$CC

Idea: to invert BWT, start from character $ and apply the LF mapping until we
see $ again.

Note: we have only column L = BWT. We can however easily reconstruct also
column F.

14

Inverting the BWT

F L
1 $... T
2 A ... T
3 C ... $
4 C ... C
5 T ... A
6 T ... C

• Begin: position 3 in column L (where $ is)

• LF mapping: 3→ 1

$

15

Inverting the BWT

F L
1 $... T
2 A ... T
3 C ... $
4 C ... C
5 T ... A
6 T ... C

• In position 1 of L we read T.

• LF mapping: 1→ 5

T$

16

Inverting the BWT

F L
1 $... T
2 A ... T
3 C ... $
4 C ... C
5 T ... A
6 T ... C

• In position 5 of L we read A.

• LF mapping: 5→ 2

AT$

17

Inverting the BWT

F L
1 $... T
2 A ... T
3 C ... $
4 C ... C
5 T ... A
6 T ... C

• In position 2 of L we read T.

• LF mapping: 2→ 6

TAT$

18

Inverting the BWT

F L
1 $... T
2 A ... T
3 C ... $
4 C ... C
5 T ... A
6 T ... C

• In position 6 of L we read C.

• LF mapping: 6→ 4

CTAT$

19

Inverting the BWT

F L
1 $... T
2 A ... T
3 C ... $
4 C ... C
5 T ... A
6 T ... C

• In position 4 of L we read C.

• LF mapping: 4→ 3

CCTAT$

20

Inverting the BWT

F L
1 $... T
2 A ... T
3 C ... $
4 C ... C
5 T ... A
6 T ... C

• In position 3 of L we read $. STOP

inverse of BWT(TT$CAC) = CCTAT$

21

Inverting the BWT

Exercise
Invert the following BWT: elnwleod$

22

Compressed text indexes

BWT as an index

Is this all? is the BWT useful only for compression?

Absolutely not! the BWT is a full-text index

23

BWT as an index

Note: occurrences of any pattern form a range in the first columns (ACT : 2-4)

1 $ACTAGTACTGACTGCTGCGGT
2 ACTAGTACTGACTGCTGCGGT$
3 ACTGACTGCTGCGGT$ACTAGT
4 ACTGCTGCGGT$ACTAGTACTG
5 AGTACTGACTGCTGCGGT$ACT
6 CGGT$ACTAGTACTGACTGCTG
7 CTAGTACTGACTGCTGCGGT$A
8 CTGACTGCTGCGGT$ACTAGTA
9 CTGCGGT$ACTAGTACTGACTG
10 CTGCTGCGGT$ACTAGTACTGA
11 GACTGCTGCGGT$ACTAGTACT
12 GCGGT$ACTAGTACTGACTGCT
13 GCTGCGGT$ACTAGTACTGACT
14 GGT$ACTAGTACTGACTGCTGC
15 GT$ACTAGTACTGACTGCTGCG
16 GTACTGACTGCTGCGGT$ACTA
17 T$ACTAGTACTGACTGCTGCGG
18 TACTGACTGCTGCGGT$ACTAG
19 TAGTACTGACTGCTGCGGT$AC
20 TGACTGCTGCGGT$ACTAGTAC
21 TGCGGT$ACTAGTACTGACTGC
22 TGCTGCGGT$ACTAGTACTGAC

24

BWT as an index

Number of occurrences of ACT = 4-2+1 = 3

1 $ACTAGTACTGACTGCTGCGGT
2 ACTAGTACTGACTGCTGCGGT$
3 ACTGACTGCTGCGGT$ACTAGT
4 ACTGCTGCGGT$ACTAGTACTG
5 AGTACTGACTGCTGCGGT$ACT
6 CGGT$ACTAGTACTGACTGCTG
7 CTAGTACTGACTGCTGCGGT$A
8 CTGACTGCTGCGGT$ACTAGTA
9 CTGCGGT$ACTAGTACTGACTG
10 CTGCTGCGGT$ACTAGTACTGA
11 GACTGCTGCGGT$ACTAGTACT
12 GCGGT$ACTAGTACTGACTGCT
13 GCTGCGGT$ACTAGTACTGACT
14 GGT$ACTAGTACTGACTGCTGC
15 GT$ACTAGTACTGACTGCTGCG
16 GTACTGACTGCTGCGGT$ACTA
17 T$ACTAGTACTGACTGCTGCGG
18 TACTGACTGCTGCGGT$ACTAG
19 TAGTACTGACTGCTGCGGT$AC
20 TGACTGCTGCGGT$ACTAGTAC
21 TGCGGT$ACTAGTACTGACTGC
22 TGCTGCGGT$ACTAGTACTGAC

With some more effort, we can also find the corresponding text positions (we will not see how).
25

BWT as an index

How do we find the range? again LF mapping: the backward search algorithm

26

The backward search algorithm

- Recall that we store only the first and last columns
- We search backwards (from last to first character of ACT)
- START: ACT. range of T: 17-22 (we find it looking at column F)

F L
1 $... T
2 A ... $
3 A ... T
4 A ... G
5 A ... T
6 C ... G
7 C ... A
8 C ... A
9 C ... G
10 C ... A
11 G ... T
12 G ... T
13 G ... T
14 G ... C
15 G ... G
16 G ... A
17 T ... G
18 T ... G
19 T ... C
20 T ... C
21 T ... C
22 T ... C

27

The backward search algorithm

Now we want to extend with C: ACT
Idea: letters in column L in range 17-22 are those that precede T’s in the text.
Map with LF only the ’C’

F L
1 $... T
2 A ... $
3 A ... T
4 A ... G
5 A ... T
6 C ... G
7 C ... A
8 C ... A
9 C ... G
10 C ... A
11 G ... T
12 G ... T
13 G ... T
14 G ... C
15 G ... G
16 G ... A
17 T ... G
18 T ... G
19 T ... C
20 T ... C
21 T ... C
22 T ... C

28

The backward search algorithm

We found the range of CT! (in orange)

F L
1 $... T
2 A ... $
3 A ... T
4 A ... G
5 A ... T
6 C ... G
7 C ... A
8 C ... A
9 C ... G
10 C ... A
11 G ... T
12 G ... T
13 G ... T
14 G ... C
15 G ... G
16 G ... A
17 T ... G
18 T ... G
19 T ... C
20 T ... C
21 T ... C
22 T ... C

29

The backward search algorithm

Now we want to extend with A: ACT
Again, letters in range 7-10 are those that precede CT in the text.
Map the ’A’ inside range 7-10 from L to F

F L
1 $... T
2 A ... $
3 A ... T
4 A ... G
5 A ... T
6 C ... G
7 C ... A
8 C ... A
9 C ... G
10 C ... A
11 G ... T
12 G ... T
13 G ... T
14 G ... C
15 G ... G
16 G ... A
17 T ... G
18 T ... G
19 T ... C
20 T ... C
21 T ... C
22 T ... C

30

The backward search algorithm

Result: range of ACT. STOP.

F L
1 $... T
2 A ... $
3 A ... T
4 A ... G
5 A ... T
6 C ... G
7 C ... A
8 C ... A
9 C ... G
10 C ... A
11 G ... T
12 G ... T
13 G ... T
14 G ... C
15 G ... G
16 G ... A
17 T ... G
18 T ... G
19 T ... C
20 T ... C
21 T ... C
22 T ... C

31

Compressed indexing

Key points

• Note that we store in memory only columns L (the BWT) and F

• Most importantly, both columns are stored compressed

• We can store very small additional data structures so that function LF is
computed very fast (i.e. few nanoseconds)

32

Compressed indexing

In practice this means that a BWT index on the Human genome (3Gbp) takes
approximately 1 GB and accelerates pattern matching by millions of times
(with respect to simply scanning the text)

Most amazingly, the (run-length) BWT of 1000 genomes takes ≈ 6 GBytes

33

Compressed indexing

In practice this means that a BWT index on the Human genome (3Gbp) takes
approximately 1 GB and accelerates pattern matching by millions of times
(with respect to simply scanning the text)

Most amazingly, the (run-length) BWT of 1000 genomes takes ≈ 6 GBytes

33

Compressed indexing

• Result: The BWT (with small additional structures) is a compressed
full-text index.

• This index is known as FM-index and was first described in:
Ferragina, Paolo, and Giovanni Manzini. "Opportunistic data structures with applications."

Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on. IEEE, 2000.

• The original index was not compressed in run-length space. This has been
achieved only very recently (2018).

34

Compressed indexing

• Result: The BWT (with small additional structures) is a compressed
full-text index.

• This index is known as FM-index and was first described in:
Ferragina, Paolo, and Giovanni Manzini. "Opportunistic data structures with applications."

Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on. IEEE, 2000.

• The original index was not compressed in run-length space. This has been
achieved only very recently (2018).

34

Compressed indexing

• Result: The BWT (with small additional structures) is a compressed
full-text index.

• This index is known as FM-index and was first described in:
Ferragina, Paolo, and Giovanni Manzini. "Opportunistic data structures with applications."

Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on. IEEE, 2000.

• The original index was not compressed in run-length space. This has been
achieved only very recently (2018).

34

Compressed indexes for DNA alignment

Huge impact in bioinformatics. The FM index stands at the core of virtually all
recent DNA aligners:

• BWA

• Bowtie

• ERNE 2

• SOAP 2

• ...

In the practical section we will take a closer look to the aligner BWA

35

	The Burrows-Wheeler transform
	Compressed text indexes

