IL PENSIERO COMPUTAZIONALE

Percorso Formativo per i Docenti della Scuola Secondaria di Secondo Grado -
Universita di Pisa

Part 2. Compressed Text Indexing

Nicola Prezza

UNIVERSITA DI P1SA

As seen in the previous lecture, any two Human genomes are 99.9% similar.

This suggests that storing a collection of genomes in plain format is not a
smart solution

We need to resort to data compression

Compression _
A compressor is an algorithm C that takes as input a file F and, exploiting

repetitions and regularities in F, produces a file C(F) that is often much
smaller than F.

Decompression
Importantly, the process must be reversible: there must exist an algorithm D (a

decompressor) such that D(C(F)) = F
Examples

e WinZip

e 7-Zip

e Bzip2

e As seen, 1000 Human genomes Gi, G, ..., Gigoo require 3 TB to be
stored: |Gy, G, ..., Giooo| = 3 TB

e As seen, 1000 Human genomes Gi, G, ..., Gigoo require 3 TB to be
stored: |Gy, G, ..., Giooo| = 3 TB

e Recall, however, that each genome carries only 3 MB of new
information...

As seen, 1000 Human genomes G, Go, ..., Gigoo require 3 TB to be
stored: |Gy, G, ..., Giooo| = 3 TB

Recall, however, that each genome carries only 3 MB of new
information...

goal: to find a good compressor C such that
|C(G1, Gz, cony G1000)| ~6 GB

Compression of repetitive text collections

The research field studying the compression of repetitive text collections is very
active. The main compression techniques used are:

e Lempel-Ziv parsing (LZ77)
e Grammar compression

e Burrows-Wheeler transform (BWT)

We will focus on BWT: the technique that has had the largest impact in
bioinformatics

The Burrows-Wheeler transform

o Michael Burrows and David J Wheeler, 1994

e BWT is at the basis of today’s most successful DNA compressed indexes:
Bowtie, BWA, SOAP2, ...

o Michael Burrows and David J Wheeler, 1994

e BWT is at the basis of today’s most successful DNA compressed indexes:
Bowtie, BWA, SOAP2, ...

Idea: we "mix" the letters in our genome G and obtain a string BWT(G) of the
same length with the following interesting properties:

e We can reconstruct G from BWT(G)
e BWT(G) is "more compressible" than G
e BWT(G) is a compressed index

... How do we do this?

Definition: right-rotation of a word

we obtain a right-rotation of a word W if we take the last character of
W and move it at the begin of W

Example

The right-rotation of bioinformatics is sbioinformatic

By repeating this process, we obtain all rotations of the word

Imagine taking all rotations of our text and sorting them in alphabetic
order ...

SCTCTCTCTCTCTCTCTCCTG
CCTGSCTCTCTCTCTCTCTCT
CTCCTGSCTCTCTCTCTCTCT
CTCTCCTGSCTCTCTCTCTCT
CTCTCTCCTGSCTCTCTCTCT
CTCTCTCTCCTGSCTCTCTCT
CTCTCTCTCTCCTGSCTCTCT
CTCTCTCTCTCTCCTGSCTCT
CTCTCTCTCTCTCTCCTGSCT
CTCTCTCTCTCTCTCTCCTGS
CTG$CTCTCTCTCTCTCTCTC
GSCTCTCTCTCTCTCTCTCCT
TCCTGSCTCTCTCTCTCTCTC
TCTCCTGSCTCTCTCTCTCTC
TCTCTCCTGSCTCTCTCTCTC
TCTCTCTCCTGSCTCTCTCTC
TCTCTCTCTCCTGSCTCTCTC
TCTCTCTCTCTCCTGSCTCTC
TCTCTCTCTCTCTCCTGSCTC
TCTCTCTCTCTCTCTCCTGSC
TGSCTCTCTCTCTCTCTCTCC

Note: character '$’ guarantees that all rotations are distinct and, therefore, their ordering is well defined.

The Burrows-Wheeler transform

Take the last column (L): this is a text permutation.

$SCTCTCTCTCTCTCTCTCCTG
CCTGSCTCTCTCTCTCTCTCT
CTCCTGSCTCTCTCTCTCTCT
CTCTCCTGSCTCTCTCTCTCT
CTCTCTCCTGSCTCTCTCTCT
CTCTCTCTCCTGSCTCTCTCT
CTCTCTCTCTCCTGSCTCTCT
CTCTCTCTCTCTCCTGSCTCT
CTCTCTCTCTCTCTCCTGSCT
CTCTCTCTCTCTCTCTCCTGS
CTGSCTCTCTCTCTCTCTCTC
GSCTCTCTCTCTCTCTCTCCT
TCCTGSCTCTCTCTCTCTCTC
TCTCCTGSCTCTCTCTCTCTC
TCTCTCCTGSCTCTCTCTCTC
TCTCTCTCCTGSCTCTCTCTC
TCTCTCTCTCCTGSCTCTCTC
TCTCTCTCTCTCCTGSCTCTC
TCTCTCTCTCTCTCCTGSCTC
TCTCTCTCTCTCTCTCCTGSC
TGSCTCTCTCTCTCTCTCTCC

This was exactly what Burrows and Wheeler proposed to do in 1994.
Last column = Burrows-Wheeler transform BWT(G) of G 9

BWT(G) = GTTTTTTTTSCTCCCCCCCCC

SCTCTCTCTCTCTCTCTCCTG
CCTGSCTCTCTCTCTCTCTCT
CTCCTGSCTCTCTCTCTCTCT
CTCTCCTGSCTCTCTCTCTCT
CTCTCTCCTGSCTCTCTCTCT
CTCTCTCTCCTGSCTCTCTCT
CTCTCTCTCTCCTGSCTCTCT
CTCTCTCTCTCTCCTGSCTCT
CTCTCTCTCTCTCTCCTGSCT
CTCTCTCTCTCTCTCTCCTGS
CTGSCTCTCTCTCTCTCTCTC
GSCTCTCTCTCTCTCTCTCCT
TCCTGSCTCTCTCTCTCTCTC
TCTCCTGSCTCTCTCTCTCTC
TCTCTCCTGSCTCTCTCTCTC
TCTCTCTCCTGSCTCTCTCTC
TCTCTCTCTCCTGSCTCTCTC
TCTCTCTCTCTCCTGSCTCTC
TCTCTCTCTCTCTCCTGSCTC
TCTCTCTCTCTCTCTCCTGSC
TGSCTCTCTCTCTCTCTCTCC

10

BWT(G) = GTTTTTTTT$CTCCCCCCCCC

Notice anything? BWT(G) is not as good as the first column
($CCCCCCCCCCGTTTTTTTTT), but very close!

11

BWT(G) = GTTTTTTTT$CTCCCCCCCCC

Notice anything? BWT(G) is not as good as the first column
($CCCCCCCCCCGTTTTTTTTT), but very close!

e Property 1: the BWT tends to produce clusters of letters if the text
is repetitive

11

BWT(G) = GTTTTTTTT$CTCCCCCCCCC

Notice anything? BWT(G) is not as good as the first column
($CCCCCCCCCCGTTTTTTTTT), but very close!

e Property 1: the BWT tends to produce clusters of letters if the text
is repetitive

e Property 2: BWT is reversible. from BWT(G), we can reconstruct
G (we will prove this later)

11

BWT(G) = GTTTTTTTT$CTCCCCCCCCC

Notice anything? BWT(G) is not as good as the first column
($CCCCCCCCCCGTTTTTTTTT), but very close!

e Property 1: the BWT tends to produce clusters of letters if the text
is repetitive

e Property 2: BWT is reversible. from BWT(G), we can reconstruct
G (we will prove this later)

e Property 3: the BWT is logically equivalent to the suffix array. It is
a text index!

11

Run-length compression

BWT(G) = GTTTTTTTT$CTCCCCCCCCC

12

Run-length compression

BWT(G) = GTTTTTTTT$CTCCCCCCCCC

e The clusters are called equal-letter runs (or just runs). In the
example above, the number r of runsis r = 6

12

Run-length compression

BWT(G) = GTTTTTTTT$CTCCCCCCCCC

e The clusters are called equal-letter runs (or just runs). In the
example above, the number r of runsis r = 6

e To compress: encode each run with its length and character:
<G7 1>7 <T7 8>7 <$’ 1>7 <C7 1>7 <T7 1>/ <C’ 9>

12

Run-length compression

BWT(G) = GTTTTTTTT$CTCCCCCCCCC
e The clusters are called equal-letter runs (or just runs). In the
example above, the number r of runsis r = 6

e To compress: encode each run with its length and character:
<G7 1>7 <T7 8>7 <$’ 1>7 <C7 1>7 <T7 1>/ <C’ 9>

e Compressed size = 12 Bytes. Original size = 21 Bytes

12

Run-length compression

BWT(G) = GTTTTTTTT$CTCCCCCCCCC

e The clusters are called equal-letter runs (or just runs). In the
example above, the number r of runsis r = 6

e To compress: encode each run with its length and character:
<G7 1>7 <T7 8>7 <$’ 1>7 <C7 1>7 <T7 1>/ <C’ 9>

e Compressed size = 12 Bytes. Original size = 21 Bytes

e ris very small if the text is repetitive!

12

Inverting the BWT

How to invert the BWT?

LF mapping
Property: the i-th character equal to x in column L and the i-th character
equal to x in column F are the same position in the text

Example

In the example below, the second 'C’ in column L (position 6) corresponds, in
the text, to the second 'C" in column F (position 4) : both are followed by
"TATS".

F L
$SCCTAT
AT$CCT
CCTATS
CTATSC
T$CCTA
TATS$CC

o0 s WNKRE

13

Inverting the BWT

Note: after jumping from position 6 in column L to position 4 in column F, go
to position 4 in column L. We just walked back of one position in the text.

F L

$CCTAT
ATS$CCT
CCTATS
CTATSC
T$CCTA
TAT$CC

S OB W N

Idea: to invert BWT, start from character $ and apply the LF mapping until we
see $ again.

Note: we have only column L = BWT. We can however easily reconstruct also

column F.
14

Inverting the BWT

S O A W N
—A 4 0N > g
O >0 o o |

e Begin: position 3 in column L (where $ is)

e LF mapping: 3 —1

15

Inverting the BWT

S O B W N =
4 4 0 N > e
A> 0O e o |

e In position 1 of L we read T.

e LF mapping: 1 — 5

TS

16

Inverting the BWT

S O B W N =
4 4 0 N > e
A >0 e o 4™

e In position 5 of L we read A.

e LF mapping: 5 — 2

ATS

17

Inverting the BWT

S O B W N =
4 4 0 N > e
A> 0O e - ™

e In position 2 of L we read T.

e LF mapping: 2 — 6

TATS

18

Inverting the BWT

S O B W N =
4 4 0 N > e
O >0 e H 4™

e In position 6 of L we read C.

e LF mapping: 6 — 4

CTATS

19

Inverting the BWT

S O A W N
4 4 0N > e
N> N e H -

e In position 4 of L we read C.

e LF mapping: 4 — 3

CCTATS

20

Inverting the BWT

S O A W DN =
4 4 0N > |
A0 e o 4™

e In position 3 of L we read $. STOP

inverse of BWT(TT$CAC) = CCTAT$S

21

Inverting the BWT

Exercise
Invert the following BWT: elnwleod$

22

Compressed text indexes

BWT as an index

Is this all? is the BWT useful only for compression?

Absolutely not! the BWT is a full-text index

23

BWT as an index

Note: occurrences of any pattern form a range in the first columns (ACT : 2-4)

SACTAGTACTGACTGCTGCGGT
ACTAGTACTGACTGCTGCGGTS
ACTGACTGCTGCGGTSACTAGT
ACTGCTGCGGTSACTAGTACTG
AGTACTGACTGCTGCGGTSACT
CGGTSACTAGTACTGACTGCTG
CTAGTACTGACTGCTGCGGTSA
CTGACTGCTGCGGTSACTAGTA
CTGCGGTSACTAGTACTGACTG
CTGCTGCGGTSACTAGTACTGA
GACTGCTGCGGTSACTAGTACT
GCGGTSACTAGTACTGACTGCT
GCTGCGGTSACTAGTACTGACT
GGTSACTAGTACTGACTGCTGC
GTSACTAGTACTGACTGCTGCG
GTACTGACTGCTGCGGTSACTA
TSACTAGTACTGACTGCTGCGG
TACTGACTGCTGCGGTSACTAG
TAGTACTGACTGCTGCGGTSAC
TGACTGCTGCGGTSACTAGTAC
TGCGGTSACTAGTACTGACTGC
TGCTGCGGTSACTAGTACTGAC

[
CHBoo~NooswN R

NNNHERBRRRBRKRRR
NHOWOWNOOOsWN

24

BWT as an index

Number of occurrences of ACT = 4-24+1 =3

$SACTAGTACTGACTGCTGCGGT
ACTAGTACTGACTGCTGCGGTS
ACTGACTGCTGCGGTSACTAGT
ACTGCTGCGGTSACTAGTACTG
AGTACTGACTGCTGCGGTSACT
CGGTSACTAGTACTGACTGCTG
CTAGTACTGACTGCTGCGGTSA
CTGACTGCTGCGGTSACTAGTA
CTGCGGTSACTAGTACTGACTG
CTGCTGCGGTSACTAGTACTGA
GACTGCTGCGGTSACTAGTACT
GCGGTSACTAGTACTGACTGCT
GCTGCGGTSACTAGTACTGACT
GGT$ACTAGTACTGACTGCTGC
GTSACTAGTACTGACTGCTGCG
GTACTGACTGCTGCGGTSACTA
TSACTAGTACTGACTGCTGCGG
TACTGACTGCTGCGGTSACTAG
TAGTACTGACTGCTGCGGTSAC
TGACTGCTGCGGTSACTAGTAC
TGCGGTSACTAGTACTGACTGC
TGCTGCGGTSACTAGTACTGAC

[
Choo~NoOoswN R

NNNRERRERBRRKHRR
N OWOWOW~NOOO~WN

With some more effort, we can also find the corresponding text positions (we will not see how).

25

BWT as an index

How do we find the range? again LF mapping: the backward search algorithm

26

The backward search algorithm

- Recall that we store only the first and last columns
- We search backwards (from last to first character of ACT)
- START: ACT. range of T: 17-22 (we find it looking at column F)

W NOOOAWNH

27

._.
5

A4 444490000000 000N>>> > 6

NN oOO>0NAHAA>O0>>0 40 e Hr

The backward search algorithm

Now we want to extend with C: ACT
Idea: letters in column L in range 17-22 are those that precede T's in the text.
Map with LF only the 'C’

W NOOAWNH

[Erg—
= o

NN R R BB B R
H O VW oWw~NOOOUA&W

28

._.
N

4444400000000 000>>>> MM

NO00OO>0NAA4A>0>>0-40 e -Hr

N
N

The backward search algorithm

We found the range of CT! (in orange)

W ~NOOAWNH

29

H
N

4444440000000 00N0N0>>>> e

NO0NNOOP>PO0NAHAA>O>>0 40 e Hr

The backward search algorithm

Now we want to extend with A: ACT
Again, letters in range 7-10 are those that precede CT in the text.
Map the 'A’ inside range 7-10 from L to F

W NOOAWNH

[Erg—
= o

NN R R BB B R
H O VW oWw~NOOOUA&W

30

._.
N

4444440000000 000N0>>> > 6

NOoONNOO>00AA4A>0222>2040 4« -

N
N

The backward search algorithm

Result: range of ACT. STOP.

0N GA WNKH

31

._.
N

4444 4400000000000 >> > > oM

NN OPONAHAA>O>>0H0 e Hr

Compressed indexing

Key points

e Note that we store in memory only columns L (the BWT) and F
e Most importantly, both columns are stored compressed

e We can store very small additional data structures so that function LF is

computed very fast (i.e. few nanoseconds)

32

Compressed indexing

In practice this means that a BWT index on the Human genome (3Gbp) takes
approximately 1 GB and accelerates pattern matching by millions of times
(with respect to simply scanning the text)

33

Compressed indexing

In practice this means that a BWT index on the Human genome (3Gbp) takes
approximately 1 GB and accelerates pattern matching by millions of times
(with respect to simply scanning the text)

Most amazingly, the (run-length) BWT of 1000 genomes takes ~ 6 GBytes

33

Compressed indexing

e Result: The BWT (with small additional structures) is a compressed
full-text index.

34

Compressed indexing

e Result: The BWT (with small additional structures) is a compressed
full-text index.

e This index is known as FM-index and was first described in:
Ferragina, Paolo, and Giovanni Manzini. "Opportunistic data structures with applications."

Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on. IEEE, 2000.

34

Compressed indexing

e Result: The BWT (with small additional structures) is a compressed

full-text index.

e This index is known as FM-index and was first described in:
Ferragina, Paolo, and Giovanni Manzini. "Opportunistic data structures with applications."

Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on. IEEE, 2000.

e The original index was not compressed in run-length space. This has been

achieved only very recently (2018).

34

Compressed indexes for DNA alignment

Huge impact in bioinformatics. The FM index stands at the core of virtually all
recent DNA aligners:

e BWA

e Bowtie

e ERNE 2
e SOAP 2

In the practical section we will take a closer look to the aligner BWA

35

	The Burrows-Wheeler transform
	Compressed text indexes

