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Machine Learning (ML)

Machine Learning is a field of 
artificial intelligence dealing 
with models and methods 
that allow computer to learn 
from data

AI
ML

Statistics

Data 
Mining

Information 
Theory



Deep Learning
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Machine Vision

“A cat is sitting on a toilet seat” 
(NeuralTalk)

“A woman holding a teddy 
bear in front of a mirror”

…some evident open issues..



Autonomous Driving



Deep Reinforcement Learning



Using Machine Learning to Generate Images 

Generative Adversarial Networks

Create faces of non-existing people



The Deep Learning Lego

Creating applications by 
putting together various 
combinations of basic types 
of neural networks



Differentiable Programming

𝜕𝑃

𝜕𝑤

Software development as a data-driven process



Python

• Support for 
vectorization
and GPU (at the price 
of some swearing at
installation time)

• Loads of useful libraries 
for
Machine learning
Deep learning
Machine vision 

The reference language 
for machine learning



ML preliminaries



Learning from examples

• Acquisition (inference/induction) from data (examples) of
the rules, models or representations which enable the
production of a desired behaviour

• The goal is not to memorize but to generalize the acquired
knowledge
• More than simply fitting the data
• Estimating the value of function for unseen examples

• Given a set of N examples
𝑥1, 𝑦1 ; 𝑥2, 𝑦2 … 𝑥𝑁, 𝑦𝑁

find a function f(·) such that it is a good predictor of y for a
future input x



ML – Tasks & Data

Supervised Learning
Learn an unknown 

function predicting an 
output in response to 

an input
• Predicting credit 

risk given customer 
profile

Unsupervised 
Learning

Identification of 
structures, regularities 

associations and 
anomalies in the data
• Signaling anomalous 

transactions

Reinforcement 
Learning

Learning of a policy or 
complex behaviour 

while being allowed to 
observe only partial 
responses from the 
interaction with the 
environment or the 

user
• Autonomous agents

(𝑥, 𝑦) (𝑥)

(𝑠, 𝑎, 𝑟)



Empirical Error (Supervised Case)

Suppose we have a finite set 
𝐷 = 𝑥1, 𝑦1 ; 𝑥2, 𝑦2 … 𝑥𝑁 , 𝑦𝑁

providing the target values 𝑦𝑖 over N samples

The empirical (sample) error of model M with respect 
to the sample D is

𝐸𝑟𝑟𝐷(𝑀) = ෍

(𝑥𝑖,𝑦𝑖)

𝐽(𝑀 𝑥𝑖 , 𝑦𝑖)

where 𝐽(𝑀 𝑥𝑖 , 𝑦𝑖) is the loss, i.e. a function measuring 
the discrepancy between the predicted 𝑀 𝑥𝑖 and the 
target value 𝑦𝑖



Empirical Risk & Model Complexity



Empirical Risk & Model Complexity

Best model now?



Empirical Risk & Model Complexity

Bias-Variance Dilemma



Key Ingredients of Machine Learning

• Data
• Tasks
• Learning Machinery

• Computational model - how knowledge is represented
• Linear regression
• Bayesian Classifier
• Neural Networks

• Learning algorithm - how knowledge is adapted to the
observations (examples)
• Backpropagation
• Expectation-Maximization

• Validation: measures of learning quality and 
performance 



ML – Information Representation

• The i-th input sample 𝑥𝑖 is a D-dimensional 
numerical vector
• Continuous, categorical or mixed values

• Describes an individual of our world of interest, 
e.g. patients in a biomedical application

• The single dimensions 𝑑 are called features 
and numerically represent an attribute of 
the individual
• E.g. if 𝑥𝑖 describes a patient, 𝑥𝑖(𝑑) can be 

his/her age

• Also output samples 𝑦𝑖 are D’-dimensional 
numerical vectors 

Vectorial data



ML – Information Representation

Images are matrices of pixels intensity

Images



ML – Information Representation

Sequential data

• Variable size data characterized by sequentially dependent 
information

• Examples: financial timeseries, sequences of operations, 
natural language sentences, …

• Each element of the sequence is a vector

• In ML can be used both as input and output information



Dataset Preparation

• Training set – use to update the weights. Patterns 
in this set are repeatedly in random order. The 
weight update equation are applied after a certain 
number of patterns.

• Validation set – use to decide when to stop 
training only by monitoring the error and to select 
the best model configuration

• Test set – Use to test the performance of the 
neural network. It should not be used as part of 
the neural network development and model 
selection cycle

Dataset should normally be split into three sets as 
follows:



• Statistically sound validation techniques should be used to 
determine model hyperparameters 
• Non-adaptive user-chosen model parameters

• E.g. architecture of neural networks, penalty weighting, 
optimization algorithm setup...

• Use validation error to select the best model configuration

No. of epochs

error

Training set

Validation set

Model Selection



Regularization

• Constrain the learning model to avoid overfitting
and help improving generalization

• Add penalization terms to the error function that
punishes the model for excessive use of resources
• Limit the amount of parameters that are used to learn a 

task
• Limit the total activation of neurons in the network  

𝐽′ = 𝐽 𝑦, 𝑦∗ + 𝜆𝑅(⋅)

Hyperparameter to be 
chosen in model selection

||𝐴||1 = σ𝑖𝑗 |𝑎𝑖𝑗|

||𝐴||2 = ෍

𝑖𝑗

𝑎𝑖𝑗
2



Neural Networks



The Neuron Metaphor

• Neurons
• accept information from multiple inputs, 
• transmit information to other neurons.

• Multiply inputs by weights along edges
• Apply some function to the set of inputs at each node

27
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• Input/Output signal may be.
• Real value.

• Unipolar {0, 1}.

• Bipolar {-1, +1}.

• Weight : θij – strength of connection from unit unit
j to unit  i

• Learning amounts to adjusting the weights θij by 
means of an optimization algorithm aiming to 
minimize a cost function

Characterizing the Artificial Neuron (I)



Characterizing the Artificial Neuron (II)

• The bias b is a constant that can be written as θi0x0

with x0 = 1 and θ i0 = b such that 

• The function f(𝑛𝑒𝑡𝑖(x))  is the unit’s activation 

function. In the simplest case, f  is the identity 

function, and the unit’s output is just its net input. 

This is called a linear unit

𝑛𝑒𝑡𝑖 =෍

𝑗=0

𝑛

θ𝑖𝑗𝑥𝑗



A Simple Linear Neuron

…

Output

Input

θ1
θ2 θ3 θM



Linear Threshold Unit (a.k.a. 
Perceptron)

…

Output

Input

θ1
θ2 θ3 θM

𝜎 𝑎 = ቊ
+1 𝑎 ≥ 0
−1 𝑎 < 0

where



The Logistic Neuron

…

Output

Input

θ1
θ2 θ3 θM



Multilayer Perceptron

…

…

Output

Input

Hidden Layer



Multilayer Perceptron

…

…

Output

Input

Hidden Layer



Multiple-Multiclass Outputs

…

…

Output

Input

Hidden Layer

…



Multi-Class Output

36

…

…

Output

Input

Hidden Layer

…

Softmax:



Neural Network Architectures

Even for a basic Neural Network, there are many 
design decisions to make:

1. # of hidden layers (depth)

2. # of units per hidden layer (width)

3. Type of activation function for each layer

4. Loss function

5. Connectivity patterns

6. Weight sharing

…



Training NNs – Cost minimization

…

θ1
θ2 θ3 θM

𝐽(𝑦, 𝑦∗)

Compute a cost function, e.g. 
the error between the 
prediction and the expected
output

Adjust the weights so 
that their new value
reduces the cost J

𝜃𝑖
′ = 𝜃𝑖 − 𝛼

𝜕𝐽

𝜕𝜃𝑖



Gradient Descent

Weights are updated in the opposite direction of the 
gradient of the loss function

Gradient direction

𝐽

𝜽
𝜽′

Gradient direction is the direction 
of uphill of the error function.

By taking the negative we are 
going downhill

Hopefully to a minimum of the 
error

𝜃𝑖
′ = 𝜃𝑖 − 𝛼

𝜕𝐽

𝜕𝜃𝑖



Training Multilayer NNs

…

…

Output

Input

Hidden Layer



Training Multilayer NNs

…

…

Output

Input

Hidden Layer

𝐽(𝑦, 𝑦∗)

How do we update these weights 
given the loss is available only at
the output unit?



Error Backpropagation

…

…

Output

Input

Hidden Layer

𝐽(𝑦, 𝑦∗)

Error is computed at the output 
and propagated back to the input 
by chain rule to compute the 
contribution of each weight 
(a.k.a. derivative) to the loss

A 2-step process
1. Forward pass - Compute 

the network output 
(model.predict())

2. Backward pass –
Compute the loss
function gradients and 
update (model.fit())



Convergence Criteria

• Learning is obtained by repeatedly supplying 
training data and adjusting by backpropagation
• Typically 1 training set presentation = 1 epoch

• We need a stopping criteria to define convergence
• Euclidean norm of the gradient vector reaches a 

sufficiently small value

• Absolute rate of change in the average squared error per 
epoch is sufficiently small 

• Validation for generalization performance : stop when 
generalization performance reaches a peak



44

• Running too many epochs may overtrain the network and 
result in overfitting and perform poorly in generalization

• Keep a hold-out validation set and test accuracy after every 
epoch. Maintain weights for best performing network on the 
validation set and stop training when error increases beyond 
this

• Always let the network run for some epochs before deciding 
to stop (patience parameter), then backtrack to best result

No. of epochs

error

Training set

Validation set

Early Stopping



Neural Network in 1 Slide

1. Given training data: 3. Define goal:

45

2. Choose each of these:

– Decision function

– Loss function

– Penalty (optional)

4. Train with SGD:

(take small steps opposite 
the gradient)

𝜆𝑅(⋅)



Deep Neural Networks



Deep Neural Networks

…

…

Output

Input

Hidden Layer 1



Deep Neural Networks

48

…

…
Input

Hidden Layer 1

…

Output

Hidden Layer 2



Deep Neural Networks

…

…
Input

Hidden Layer 1

…
Hidden Layer 2

…

Output

Hidden Layer 3

Actually deep 
learning is way 
more than having
neural networks 
with a lot of layers

Backpropagation
through many
layers has
numerical
problems that
makes learning 
not-
straightforward
(Gradient
Vanish/Esplosio
n)



Representation learning

• We don’t know the 
“right” levels of 
abstraction of 
information that is 
good for the 
machine 

• So let the model 
figure it out!

50
Example from Honglak Lee (NIPS 2010)



Representation learning

Face Recognition:
• Deep Network can 

build up 
increasingly higher 
levels of abstraction

• Lines, parts, regions

51
Example from Honglak Lee (NIPS 2010)



Representation learning

52
Example from Honglak Lee (NIPS 2010)

…

…
Input

Hidden Layer 1

…
Hidden Layer 2

…

Output

Hidden Layer 3



Convolutional Neural Networks



Introduction

Convolutional Neural Networks



Dense Vector Multiplication

Processing images: the dense way

32x32x3 image

Reshape it into 
a vector

3072

𝒙

100x3072

𝑾

𝑾𝒙𝑻

An input-sized weight 
vector for each 
hidden neuron

100
Each element contains the 
activation of 1 neuron



Convolution Operator

32x32

Matrix input preserving 
spatial structure

5x5
filter

sum 25 multiplications + bias



Adaptive Convolution

1 0 1

2 3 4

1 0 1

1 0 1

0 2 0

1 0 1

𝑤1 𝑤2 𝑤3

𝑤4 𝑤5 𝑤6

𝑤7 𝑤8 𝑤9

𝒘𝑇𝒙2,2

𝑐1

𝑐2

𝑐2 = 𝑤1+ 𝑤3 + 2𝑤5 + 𝑤7 + 𝑤9

Convolutional filter (kernel) with 
(adaptive) weights 𝑤𝑖

𝑐1 = 𝑤1+ 𝑤3 + 2𝑤4 + 3𝑤5 +4𝑤6 + 𝑤7 + 𝑤9

𝒘𝑇𝒙9,7



Convolutional Features

32x32

Slide the filter on the image 
computing elementwise products 
and summing up

28x28

Convolution 
features



Multi-Channel Convolution

32x32x3

5x5x3 Convolution 
filter has a 
number of 
slices equal to 
the number of 
image channels



Multi-Channel Convolution

28x28

All channels are typically convolved together
• They are summed-up in the convolution
• The convolution map stays bi-dimensional



Stride

• Basic convolution slides 
the filter on the image 
one pixel at a time
• Stride = 1
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Stride

• Basic convolution slides 
the filter on the image 
one pixel at a time
• Stride = 1

• Can define a different 
stride
• Hyperparameter

• Stride reduces the 
number of 
multiplications
• Subsamples the image

stride = 2

Works in both directions!



Zero Padding

0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

Add columns and rows of zeros to the border of the 
image

H=7 
(P = 1)

W=7 (P=1)

Zero padding serves to 
retain the original size 
of image

𝑃 =
𝐾 − 1

2

Pad as necessary to 
perform convolutions 
with a given stride S



Feature Map Transformation

• Convolution is a linear operator

• Apply an element-wise nonlinearity to obtain a 
transformed feature map

32x32x3 32x32

K=3,S=1, 
P=1

𝒘𝑇𝒙𝑖,𝑗 + 𝑏

32x32

𝒎𝒂𝒙(𝟎,𝒘𝑇𝒙𝑖,𝑗 + 𝑏)



Pooling

• Operates on the feature map to make the 
representation
• Smaller (subsampling)

• Robust to (some) transformations

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

6 8

3 4

Max pooling

2x2 filters
stride = 2

feature map

pooled map

W=4

H=4

W’=2

H’=2



Convolutional Filter Banks

𝐾 × 𝐾 × 𝐷𝐼 × 𝐷𝐾

𝐻 ×𝑊 ×𝐷𝐼

𝐷𝐾 convolutional 
filters of size KxK

𝐻′ ×𝑊′ × 𝐷𝐾

Feature map 
+ nonlinearity

𝐻′′ × 𝑊′′ × 𝐷𝐾

Number of model 
parameters due to this 
convolution element 
(add 𝐷𝐾 bias terms)

Pooling is often (not 
always) applied 
independently on the 𝐷𝐾
convolutions

Pooling



Specifying CNN in Code (Keras)

Introduction
Convolutional NN
Advanced Topics

Model
Notable Architectures
Visualizing Convolutions

model = Sequential()

model.add(Conv2D(32, kernel_size=(5, 5), strides=(1, 1),

activation='relu',

input_shape=input_shape))

model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

model.add(Conv2D(64, (5, 5))

model.add(Activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())

model.add(Dense(1000, activation='relu'))

model.add(Dense(num_classes, activation='softmax'))

Number of convolution filters 𝐷𝑘 Define input size (only first 
hidden layer)

Does for you all the calculations to determine the 
final size to the dense layer (in most frameworks, 
you have to supply it)



LeNet-5 (1989)

• Grayscale images
• Filters are 5x5 with stride 1 (sigmoid nonlinearity)
• Pooling is 2x2 with stride 2
• No zero padding



CNN Architecture Evolution



Semantic Segmentation

Traditional CNN cannot be used for this task due to the 
downsampling of the striding and pooling operations



Deconvolution Architecture

Badrinarayanan et al, SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation, 
PAMI 2017

Maxpooling indices transferred to decoder to 
improve the segmentation resolution.



SegNet Segmentation 

Demo here: http://mi.eng.cam.ac.uk/projects/segnet/



Software

• CNN are supported by any deep learning 
framework (TF, Torch, Pytorch, MS Cognitive TK, 
Intel OpenVino) 

• Caffe was one of the initiators and basically built 
around CNN
• Introduced protobuffer network specification 

• ModelZoo of pretrained models (LeNet, AlexNet, …)

• Support for GPU

• Caffe2 is Facebook’s extensions to Caffe
• Less CNN oriented

• Support from large scale to mobile nets

• More production oriented than other frameworks



Other Software

• Matlab distributes its Neural Network Toolbox 
which allows importing pretrained models from 
Caffe and Keras-TF

• Matconvnet is an unofficial Matlab library 
specialized for CNN development (GPU, modelzoo, 
…)

• Want to have a CNN in your browser?
• Try ConvNetJS

(https://cs.stanford.edu/people/karpathy/convnetjs/)

https://cs.stanford.edu/people/karpathy/convnetjs/


GUIs 

Major hardware producers have GUI and toolkits
wrapping Caffe, Keras and TF to play with CNNs

NVIDIA Digits
Intel OpenVino

Plus 
others…

Barista



Recurrent Neural Networks



Dealing with Sequences in NN

• Recurrent Neural Network
• Fully adaptive (Elman, SRN, …)

• Randomized approaches (Reservoir Computing)

• Gated recurrent networks

…

𝑡 = 0 𝑡 = 1 𝑡 = 𝑁𝑡 = 2

𝑐3
𝑐𝑁

Neural models need to 
capture dynamic context 
𝑐𝑡 to perform predictions

Variable size data 
describing sequentially 
dependent information



Unfolding RNN (Forward Pass)

By now you should be familiar with the concept 
of model unfolding/unrolling on the data

…𝑥0 𝑥1 𝑥2 𝑥𝑡

model

data

unfolding

𝑞−1

memory 
encoding

Graphics credit @ 
colah.github.io

Map an arbitrary 
length sequence 
𝑥0. . 𝑥𝑡 to fixed-
length encoding 𝒉𝑡



Supervised Recurrent Tasks

element to element

input

hidden

output

sequence to item item to sequence sequence to sequence

Graphics credit @ karpathy.github.io



Learning to Encode Input History

Hidden state 𝒉𝑡 summarizes information on the 
history of the input signal up to time 𝑡



Long Short Term Memory – The Cell

𝒙𝑡

ℎ𝑡
ℎ𝑡−1

+𝑐𝑡−1

𝑐𝑡

𝑔𝑡

+

×

Using gates to 
control 
memory access

+

×

+

×

+



Deep LSTM

LSTM CELL LSTM CELL LSTM CELL
𝑦𝑡𝑥𝑡

𝒉𝑡
1

𝒉𝑡
2

𝒉𝑡
3

𝒉𝑡−1
1

𝒉𝑡−1
2

𝒉𝑡−1
3

LSTM layers extract information at increasing levels of 
abstraction (enlarging context)



Bidirectional LSTM – Character Recognition

Original input

Preprocessed 
input

LSTM
layers

Character 
distribution

1 output for each character 
plus no output symbol

A. Graves, A novel connectionist system for 
unconstrained handwriting recognition,  TPAMI 2009



Predicting the future with RNNs

Element-to-element



Generative Use of LSTM/GRU

LSTM1

LSTM2

LSTM3

H e l

e l l

Bypass 
connections

Refeeding 
output at 
prediction 
time

Teacher forcing 
at training time

A. Graves, Generating Sequences With Recurrent Neural Networks, 2013



Character Generation Fun

PANDARUS:
Alas, I think he shall be come approached and 
the day
When little srain would be attain'd into being 
never fed,
And who is but a chain and subjects of his 
death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon 
my soul,
Breaking and strongly should be buried, when I 
perish
The earth and thoughts of many states.

Shakespeare

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Character Generation Fun

Advanced Models & Applications
Software
Conclusions

Introduction
Deep Gated RNN

Applications

/*
* If this error is set, we will need anything right after that BSD.
*/
static void action_new_function(struct s_stat_info *wb)
{
unsigned long flags;
int lel_idx_bit = e->edd, *sys & ~((unsigned long) *FIRST_COMPAT);
buf[0] = 0xFFFFFFFF & (bit << 4);
min(inc, slist->bytes);
printk(KERN_WARNING "Memory allocated %02x/%02x, "

"original MLL instead\n"),
min(min(multi_run - s->len, max) * num_data_in),
frame_pos, sz + first_seg);

div_u64_w(val, inb_p);
spin_unlock(&disk->queue_lock);
mutex_unlock(&s->sock->mutex);
mutex_unlock(&func->mutex);
return disassemble(info->pending_bh);

}

Linux Kernel 
Code

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Generate Sad Jokes

Why did the boy stop his homework?
Because they’re bunny boo!

What do you get if you cross a famous 
California little boy with an elephant for 
players?
Market holes.

A 3-LSTM layers neural network to generate English 
jokes character by character

Q: Why did the death penis learn string?
A: Because he wanted to have some 
roasts case!



Software

• Standard gated RNN are available in all deep learning 
frameworks (Python et al) as well as in Matlab’s Neural 
Network Toolbox 

• If you want to play with one-element ahead sequence 
generation try out char-RNN implementations
• https://github.com/karpathy/char-rnn (ORIGINAL)

• https://github.com/sherjilozair/char-rnn-tensorflow

• https://github.com/crazydonkey200/tensorflow-char-rnn

• http://pytorch.org/tutorials/intermediate/char_rnn_generati
on_tutorial.html

https://github.com/karpathy/char-rnn
https://github.com/sherjilozair/char-rnn-tensorflow
https://github.com/crazydonkey200/tensorflow-char-rnn
http://pytorch.org/tutorials/intermediate/char_rnn_generation_tutorial.html


Wrap-Up



Things to Remember

• Vectorial data: feedforward neural networks

• Image data: convolutional neural networks

• Sequential data: recurrent neural networks

• Need to chose:
• Activation and loss functions
• Optimization algorithms

• Model selection
• Train-valid-test
• Data preprocessing
• Regularization



Part A



Part B

Actually, this is
largely a 
subset of the 
existing
architectures
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