
Introduction to (Deep) Neural Networks

Davide Bacciu

bacciu@di.unipi.it

Computational Intelligence &
Machine Learning Group

Outline

• Introduction

• Machine learning preliminaries

• Neural Networks basics
• Neuron model

• Architectural aspects

• Training

• Deep learning
• Convolutional neural networks (images)

• Recurrent neural networks (sequences)

Machine Learning (ML)

Machine Learning is a field of
artificial intelligence dealing
with models and methods
that allow computer to learn
from data

AI
ML

Statistics

Data
Mining

Information
Theory

Deep Learning

Input

Hard-coded
expert

reasoning

Prediction

Expert-
designed
features

Trainable predictor

Learned
features

AI

ML

Learned
feature

hierarchy

Deep
Learning

ANN

Machine Vision

“A cat is sitting on a toilet seat”
(NeuralTalk)

“A woman holding a teddy
bear in front of a mirror”

…some evident open issues..

Autonomous Driving

Deep Reinforcement Learning

Using Machine Learning to Generate Images

Generative Adversarial Networks

Create faces of non-existing people

The Deep Learning Lego

Creating applications by
putting together various
combinations of basic types
of neural networks

Differentiable Programming

𝜕𝑃

𝜕𝑤

Software development as a data-driven process

Python

• Support for
vectorization
and GPU (at the price
of some swearing at
installation time)

• Loads of useful libraries
for
Machine learning
Deep learning
Machine vision

The reference language
for machine learning

ML preliminaries

Learning from examples

• Acquisition (inference/induction) from data (examples) of
the rules, models or representations which enable the
production of a desired behaviour

• The goal is not to memorize but to generalize the acquired
knowledge
• More than simply fitting the data
• Estimating the value of function for unseen examples

• Given a set of N examples
𝑥1, 𝑦1 ; 𝑥2, 𝑦2 … 𝑥𝑁, 𝑦𝑁

find a function f(·) such that it is a good predictor of y for a
future input x

ML – Tasks & Data

Supervised Learning
Learn an unknown

function predicting an
output in response to

an input
• Predicting credit

risk given customer
profile

Unsupervised
Learning

Identification of
structures, regularities

associations and
anomalies in the data
• Signaling anomalous

transactions

Reinforcement
Learning

Learning of a policy or
complex behaviour

while being allowed to
observe only partial
responses from the
interaction with the
environment or the

user
• Autonomous agents

(𝑥, 𝑦) (𝑥)

(𝑠, 𝑎, 𝑟)

Empirical Error (Supervised Case)

Suppose we have a finite set
𝐷 = 𝑥1, 𝑦1 ; 𝑥2, 𝑦2 … 𝑥𝑁 , 𝑦𝑁

providing the target values 𝑦𝑖 over N samples

The empirical (sample) error of model M with respect
to the sample D is

𝐸𝑟𝑟𝐷(𝑀) = ෍

(𝑥𝑖,𝑦𝑖)

𝐽(𝑀 𝑥𝑖 , 𝑦𝑖)

where 𝐽(𝑀 𝑥𝑖 , 𝑦𝑖) is the loss, i.e. a function measuring
the discrepancy between the predicted 𝑀 𝑥𝑖 and the
target value 𝑦𝑖

Empirical Risk & Model Complexity

Empirical Risk & Model Complexity

Best model now?

Empirical Risk & Model Complexity

Bias-Variance Dilemma

Key Ingredients of Machine Learning

• Data
• Tasks
• Learning Machinery

• Computational model - how knowledge is represented
• Linear regression
• Bayesian Classifier
• Neural Networks

• Learning algorithm - how knowledge is adapted to the
observations (examples)
• Backpropagation
• Expectation-Maximization

• Validation: measures of learning quality and
performance

ML – Information Representation

• The i-th input sample 𝑥𝑖 is a D-dimensional
numerical vector
• Continuous, categorical or mixed values

• Describes an individual of our world of interest,
e.g. patients in a biomedical application

• The single dimensions 𝑑 are called features
and numerically represent an attribute of
the individual
• E.g. if 𝑥𝑖 describes a patient, 𝑥𝑖(𝑑) can be

his/her age

• Also output samples 𝑦𝑖 are D’-dimensional
numerical vectors

Vectorial data

ML – Information Representation

Images are matrices of pixels intensity

Images

ML – Information Representation

Sequential data

• Variable size data characterized by sequentially dependent
information

• Examples: financial timeseries, sequences of operations,
natural language sentences, …

• Each element of the sequence is a vector

• In ML can be used both as input and output information

Dataset Preparation

• Training set – use to update the weights. Patterns
in this set are repeatedly in random order. The
weight update equation are applied after a certain
number of patterns.

• Validation set – use to decide when to stop
training only by monitoring the error and to select
the best model configuration

• Test set – Use to test the performance of the
neural network. It should not be used as part of
the neural network development and model
selection cycle

Dataset should normally be split into three sets as
follows:

• Statistically sound validation techniques should be used to
determine model hyperparameters
• Non-adaptive user-chosen model parameters

• E.g. architecture of neural networks, penalty weighting,
optimization algorithm setup...

• Use validation error to select the best model configuration

No. of epochs

error

Training set

Validation set

Model Selection

Regularization

• Constrain the learning model to avoid overfitting
and help improving generalization

• Add penalization terms to the error function that
punishes the model for excessive use of resources
• Limit the amount of parameters that are used to learn a

task
• Limit the total activation of neurons in the network

𝐽′ = 𝐽 𝑦, 𝑦∗ + 𝜆𝑅(⋅)

Hyperparameter to be
chosen in model selection

||𝐴||1 = σ𝑖𝑗 |𝑎𝑖𝑗|

||𝐴||2 = ෍

𝑖𝑗

𝑎𝑖𝑗
2

Neural Networks

The Neuron Metaphor

• Neurons
• accept information from multiple inputs,
• transmit information to other neurons.

• Multiply inputs by weights along edges
• Apply some function to the set of inputs at each node

27

28

• Input/Output signal may be.
• Real value.

• Unipolar {0, 1}.

• Bipolar {-1, +1}.

• Weight : θij – strength of connection from unit unit
j to unit i

• Learning amounts to adjusting the weights θij by
means of an optimization algorithm aiming to
minimize a cost function

Characterizing the Artificial Neuron (I)

Characterizing the Artificial Neuron (II)

• The bias b is a constant that can be written as θi0x0

with x0 = 1 and θ i0 = b such that

• The function f(𝑛𝑒𝑡𝑖(x)) is the unit’s activation

function. In the simplest case, f is the identity

function, and the unit’s output is just its net input.

This is called a linear unit

𝑛𝑒𝑡𝑖 =෍

𝑗=0

𝑛

θ𝑖𝑗𝑥𝑗

A Simple Linear Neuron

…

Output

Input

θ1
θ2 θ3 θM

Linear Threshold Unit (a.k.a.
Perceptron)

…

Output

Input

θ1
θ2 θ3 θM

𝜎 𝑎 = ቊ
+1 𝑎 ≥ 0
−1 𝑎 < 0

where

The Logistic Neuron

…

Output

Input

θ1
θ2 θ3 θM

Multilayer Perceptron

…

…

Output

Input

Hidden Layer

Multilayer Perceptron

…

…

Output

Input

Hidden Layer

Multiple-Multiclass Outputs

…

…

Output

Input

Hidden Layer

…

Multi-Class Output

36

…

…

Output

Input

Hidden Layer

…

Softmax:

Neural Network Architectures

Even for a basic Neural Network, there are many
design decisions to make:

1. # of hidden layers (depth)

2. # of units per hidden layer (width)

3. Type of activation function for each layer

4. Loss function

5. Connectivity patterns

6. Weight sharing

…

Training NNs – Cost minimization

…

θ1
θ2 θ3 θM

𝐽(𝑦, 𝑦∗)

Compute a cost function, e.g.
the error between the
prediction and the expected
output

Adjust the weights so
that their new value
reduces the cost J

𝜃𝑖
′ = 𝜃𝑖 − 𝛼

𝜕𝐽

𝜕𝜃𝑖

Gradient Descent

Weights are updated in the opposite direction of the
gradient of the loss function

Gradient direction

𝐽

𝜽
𝜽′

Gradient direction is the direction
of uphill of the error function.

By taking the negative we are
going downhill

Hopefully to a minimum of the
error

𝜃𝑖
′ = 𝜃𝑖 − 𝛼

𝜕𝐽

𝜕𝜃𝑖

Training Multilayer NNs

…

…

Output

Input

Hidden Layer

Training Multilayer NNs

…

…

Output

Input

Hidden Layer

𝐽(𝑦, 𝑦∗)

How do we update these weights
given the loss is available only at
the output unit?

Error Backpropagation

…

…

Output

Input

Hidden Layer

𝐽(𝑦, 𝑦∗)

Error is computed at the output
and propagated back to the input
by chain rule to compute the
contribution of each weight
(a.k.a. derivative) to the loss

A 2-step process
1. Forward pass - Compute

the network output
(model.predict())

2. Backward pass –
Compute the loss
function gradients and
update (model.fit())

Convergence Criteria

• Learning is obtained by repeatedly supplying
training data and adjusting by backpropagation
• Typically 1 training set presentation = 1 epoch

• We need a stopping criteria to define convergence
• Euclidean norm of the gradient vector reaches a

sufficiently small value

• Absolute rate of change in the average squared error per
epoch is sufficiently small

• Validation for generalization performance : stop when
generalization performance reaches a peak

44

• Running too many epochs may overtrain the network and
result in overfitting and perform poorly in generalization

• Keep a hold-out validation set and test accuracy after every
epoch. Maintain weights for best performing network on the
validation set and stop training when error increases beyond
this

• Always let the network run for some epochs before deciding
to stop (patience parameter), then backtrack to best result

No. of epochs

error

Training set

Validation set

Early Stopping

Neural Network in 1 Slide

1. Given training data: 3. Define goal:

45

2. Choose each of these:

– Decision function

– Loss function

– Penalty (optional)

4. Train with SGD:

(take small steps opposite
the gradient)

𝜆𝑅(⋅)

Deep Neural Networks

Deep Neural Networks

…

…

Output

Input

Hidden Layer 1

Deep Neural Networks

48

…

…
Input

Hidden Layer 1

…

Output

Hidden Layer 2

Deep Neural Networks

…

…
Input

Hidden Layer 1

…
Hidden Layer 2

…

Output

Hidden Layer 3

Actually deep
learning is way
more than having
neural networks
with a lot of layers

Backpropagation
through many
layers has
numerical
problems that
makes learning
not-
straightforward
(Gradient
Vanish/Esplosio
n)

Representation learning

• We don’t know the
“right” levels of
abstraction of
information that is
good for the
machine

• So let the model
figure it out!

50
Example from Honglak Lee (NIPS 2010)

Representation learning

Face Recognition:
• Deep Network can

build up
increasingly higher
levels of abstraction

• Lines, parts, regions

51
Example from Honglak Lee (NIPS 2010)

Representation learning

52
Example from Honglak Lee (NIPS 2010)

…

…
Input

Hidden Layer 1

…
Hidden Layer 2

…

Output

Hidden Layer 3

Convolutional Neural Networks

Introduction

Convolutional Neural Networks

Dense Vector Multiplication

Processing images: the dense way

32x32x3 image

Reshape it into
a vector

3072

𝒙

100x3072

𝑾

𝑾𝒙𝑻

An input-sized weight
vector for each
hidden neuron

100
Each element contains the
activation of 1 neuron

Convolution Operator

32x32

Matrix input preserving
spatial structure

5x5
filter

sum 25 multiplications + bias

Adaptive Convolution

1 0 1

2 3 4

1 0 1

1 0 1

0 2 0

1 0 1

𝑤1 𝑤2 𝑤3

𝑤4 𝑤5 𝑤6

𝑤7 𝑤8 𝑤9

𝒘𝑇𝒙2,2

𝑐1

𝑐2

𝑐2 = 𝑤1+ 𝑤3 + 2𝑤5 + 𝑤7 + 𝑤9

Convolutional filter (kernel) with
(adaptive) weights 𝑤𝑖

𝑐1 = 𝑤1+ 𝑤3 + 2𝑤4 + 3𝑤5 +4𝑤6 + 𝑤7 + 𝑤9

𝒘𝑇𝒙9,7

Convolutional Features

32x32

Slide the filter on the image
computing elementwise products
and summing up

28x28

Convolution
features

Multi-Channel Convolution

32x32x3

5x5x3 Convolution
filter has a
number of
slices equal to
the number of
image channels

Multi-Channel Convolution

28x28

All channels are typically convolved together
• They are summed-up in the convolution
• The convolution map stays bi-dimensional

Stride

• Basic convolution slides
the filter on the image
one pixel at a time
• Stride = 1

Stride

• Basic convolution slides
the filter on the image
one pixel at a time
• Stride = 1

stride = 1

Stride

• Basic convolution slides
the filter on the image
one pixel at a time
• Stride = 1

stride = 1

Stride

• Basic convolution slides
the filter on the image
one pixel at a time
• Stride = 1

stride = 1

Stride

• Basic convolution slides
the filter on the image
one pixel at a time
• Stride = 1

• Can define a different
stride
• Hyperparameter

stride = 2

Stride

• Basic convolution slides
the filter on the image
one pixel at a time
• Stride = 1

• Can define a different
stride
• Hyperparameter

stride = 2

Stride

• Basic convolution slides
the filter on the image
one pixel at a time
• Stride = 1

• Can define a different
stride
• Hyperparameter

stride = 2

Stride

• Basic convolution slides
the filter on the image
one pixel at a time
• Stride = 1

• Can define a different
stride
• Hyperparameter

stride = 2

Stride

• Basic convolution slides
the filter on the image
one pixel at a time
• Stride = 1

• Can define a different
stride
• Hyperparameter

• Stride reduces the
number of
multiplications
• Subsamples the image

stride = 2

Works in both directions!

Zero Padding

0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

Add columns and rows of zeros to the border of the
image

H=7
(P = 1)

W=7 (P=1)

Zero padding serves to
retain the original size
of image

𝑃 =
𝐾 − 1

2

Pad as necessary to
perform convolutions
with a given stride S

Feature Map Transformation

• Convolution is a linear operator

• Apply an element-wise nonlinearity to obtain a
transformed feature map

32x32x3 32x32

K=3,S=1,
P=1

𝒘𝑇𝒙𝑖,𝑗 + 𝑏

32x32

𝒎𝒂𝒙(𝟎,𝒘𝑇𝒙𝑖,𝑗 + 𝑏)

Pooling

• Operates on the feature map to make the
representation
• Smaller (subsampling)

• Robust to (some) transformations

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

6 8

3 4

Max pooling

2x2 filters
stride = 2

feature map

pooled map

W=4

H=4

W’=2

H’=2

Convolutional Filter Banks

𝐾 × 𝐾 × 𝐷𝐼 × 𝐷𝐾

𝐻 ×𝑊 ×𝐷𝐼

𝐷𝐾 convolutional
filters of size KxK

𝐻′ ×𝑊′ × 𝐷𝐾

Feature map
+ nonlinearity

𝐻′′ × 𝑊′′ × 𝐷𝐾

Number of model
parameters due to this
convolution element
(add 𝐷𝐾 bias terms)

Pooling is often (not
always) applied
independently on the 𝐷𝐾
convolutions

Pooling

Specifying CNN in Code (Keras)

Introduction
Convolutional NN
Advanced Topics

Model
Notable Architectures
Visualizing Convolutions

model = Sequential()

model.add(Conv2D(32, kernel_size=(5, 5), strides=(1, 1),

activation='relu',

input_shape=input_shape))

model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

model.add(Conv2D(64, (5, 5))

model.add(Activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())

model.add(Dense(1000, activation='relu'))

model.add(Dense(num_classes, activation='softmax'))

Number of convolution filters 𝐷𝑘 Define input size (only first
hidden layer)

Does for you all the calculations to determine the
final size to the dense layer (in most frameworks,
you have to supply it)

LeNet-5 (1989)

• Grayscale images
• Filters are 5x5 with stride 1 (sigmoid nonlinearity)
• Pooling is 2x2 with stride 2
• No zero padding

CNN Architecture Evolution

Semantic Segmentation

Traditional CNN cannot be used for this task due to the
downsampling of the striding and pooling operations

Deconvolution Architecture

Badrinarayanan et al, SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation,
PAMI 2017

Maxpooling indices transferred to decoder to
improve the segmentation resolution.

SegNet Segmentation

Demo here: http://mi.eng.cam.ac.uk/projects/segnet/

Software

• CNN are supported by any deep learning
framework (TF, Torch, Pytorch, MS Cognitive TK,
Intel OpenVino)

• Caffe was one of the initiators and basically built
around CNN
• Introduced protobuffer network specification

• ModelZoo of pretrained models (LeNet, AlexNet, …)

• Support for GPU

• Caffe2 is Facebook’s extensions to Caffe
• Less CNN oriented

• Support from large scale to mobile nets

• More production oriented than other frameworks

Other Software

• Matlab distributes its Neural Network Toolbox
which allows importing pretrained models from
Caffe and Keras-TF

• Matconvnet is an unofficial Matlab library
specialized for CNN development (GPU, modelzoo,
…)

• Want to have a CNN in your browser?
• Try ConvNetJS

(https://cs.stanford.edu/people/karpathy/convnetjs/)

https://cs.stanford.edu/people/karpathy/convnetjs/

GUIs

Major hardware producers have GUI and toolkits
wrapping Caffe, Keras and TF to play with CNNs

NVIDIA Digits
Intel OpenVino

Plus
others…

Barista

Recurrent Neural Networks

Dealing with Sequences in NN

• Recurrent Neural Network
• Fully adaptive (Elman, SRN, …)

• Randomized approaches (Reservoir Computing)

• Gated recurrent networks

…

𝑡 = 0 𝑡 = 1 𝑡 = 𝑁𝑡 = 2

𝑐3
𝑐𝑁

Neural models need to
capture dynamic context
𝑐𝑡 to perform predictions

Variable size data
describing sequentially
dependent information

Unfolding RNN (Forward Pass)

By now you should be familiar with the concept
of model unfolding/unrolling on the data

…𝑥0 𝑥1 𝑥2 𝑥𝑡

model

data

unfolding

𝑞−1

memory
encoding

Graphics credit @
colah.github.io

Map an arbitrary
length sequence
𝑥0. . 𝑥𝑡 to fixed-
length encoding 𝒉𝑡

Supervised Recurrent Tasks

element to element

input

hidden

output

sequence to item item to sequence sequence to sequence

Graphics credit @ karpathy.github.io

Learning to Encode Input History

Hidden state 𝒉𝑡 summarizes information on the
history of the input signal up to time 𝑡

Long Short Term Memory – The Cell

𝒙𝑡

ℎ𝑡
ℎ𝑡−1

+𝑐𝑡−1

𝑐𝑡

𝑔𝑡

+

×

Using gates to
control
memory access

+

×

+

×

+

Deep LSTM

LSTM CELL LSTM CELL LSTM CELL
𝑦𝑡𝑥𝑡

𝒉𝑡
1

𝒉𝑡
2

𝒉𝑡
3

𝒉𝑡−1
1

𝒉𝑡−1
2

𝒉𝑡−1
3

LSTM layers extract information at increasing levels of
abstraction (enlarging context)

Bidirectional LSTM – Character Recognition

Original input

Preprocessed
input

LSTM
layers

Character
distribution

1 output for each character
plus no output symbol

A. Graves, A novel connectionist system for
unconstrained handwriting recognition, TPAMI 2009

Predicting the future with RNNs

Element-to-element

Generative Use of LSTM/GRU

LSTM1

LSTM2

LSTM3

H e l

e l l

Bypass
connections

Refeeding
output at
prediction
time

Teacher forcing
at training time

A. Graves, Generating Sequences With Recurrent Neural Networks, 2013

Character Generation Fun

PANDARUS:
Alas, I think he shall be come approached and
the day
When little srain would be attain'd into being
never fed,
And who is but a chain and subjects of his
death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon
my soul,
Breaking and strongly should be buried, when I
perish
The earth and thoughts of many states.

Shakespeare

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Character Generation Fun

Advanced Models & Applications
Software
Conclusions

Introduction
Deep Gated RNN

Applications

/*
* If this error is set, we will need anything right after that BSD.
*/
static void action_new_function(struct s_stat_info *wb)
{
unsigned long flags;
int lel_idx_bit = e->edd, *sys & ~((unsigned long) *FIRST_COMPAT);
buf[0] = 0xFFFFFFFF & (bit << 4);
min(inc, slist->bytes);
printk(KERN_WARNING "Memory allocated %02x/%02x, "

"original MLL instead\n"),
min(min(multi_run - s->len, max) * num_data_in),
frame_pos, sz + first_seg);

div_u64_w(val, inb_p);
spin_unlock(&disk->queue_lock);
mutex_unlock(&s->sock->mutex);
mutex_unlock(&func->mutex);
return disassemble(info->pending_bh);

}

Linux Kernel
Code

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Generate Sad Jokes

Why did the boy stop his homework?
Because they’re bunny boo!

What do you get if you cross a famous
California little boy with an elephant for
players?
Market holes.

A 3-LSTM layers neural network to generate English
jokes character by character

Q: Why did the death penis learn string?
A: Because he wanted to have some
roasts case!

Software

• Standard gated RNN are available in all deep learning
frameworks (Python et al) as well as in Matlab’s Neural
Network Toolbox

• If you want to play with one-element ahead sequence
generation try out char-RNN implementations
• https://github.com/karpathy/char-rnn (ORIGINAL)

• https://github.com/sherjilozair/char-rnn-tensorflow

• https://github.com/crazydonkey200/tensorflow-char-rnn

• http://pytorch.org/tutorials/intermediate/char_rnn_generati
on_tutorial.html

https://github.com/karpathy/char-rnn
https://github.com/sherjilozair/char-rnn-tensorflow
https://github.com/crazydonkey200/tensorflow-char-rnn
http://pytorch.org/tutorials/intermediate/char_rnn_generation_tutorial.html

Wrap-Up

Things to Remember

• Vectorial data: feedforward neural networks

• Image data: convolutional neural networks

• Sequential data: recurrent neural networks

• Need to chose:
• Activation and loss functions
• Optimization algorithms

• Model selection
• Train-valid-test
• Data preprocessing
• Regularization

Part A

Part B

Actually, this is
largely a
subset of the
existing
architectures

References

A practical handbook to start wrestling
with Machine Learning models (2nd ed)

• 1st edition content is outdated on the NN
part!

The reference book for deep learning
models

• Also freely available online

Advanced ML course @ UNIPI: bit.ly/2rzREqb

bit.ly/2rzREqb

